Power Supplies, Power Converters, Useful Signal Sources

Greg Kovacs

Department of Electrical Engineering

Stanford University

Power Supplies

- Linear supplies sine wave input, step down (or up) transformer, rectification, filtering and (if necessary) regulation.
 - Simple in implementation.
 - Can be heavy (transformer iron!).
 - Generally low noise.
- Switching supplies feedback-controlled transfer of energy packets from a supply (sometimes rectified straight from the line) to a load.
 - Much higher power density.
 - Higher complexity.
 - Can be noisier than linear supplies.

THE UNREGULATED POWER SUPPLY

- This is the basic "linear" power supply.
- The input transformer typically "steps-down" the input voltage.
- The diode bridge rectifies the AC output of the transformer.
- The filter capacitor tries to make the output DC.

PROBLEMS:

- The output isn't "perfect" DC.
- The output is (as the name implies)
 UNREGULATED.

$$V_{DC} = \frac{2V_{PEAK}}{\pi} = 0.637V_{PEAK} = 0.9V_{RMS}$$

$$V_{PEAK} = \sqrt{2}V_{RMS}$$

Transformer

THE TRANSFORMER

Alternating magnetic fields in the core, created from AC voltage applied to the primary winding, are available at the secondary winding at a voltage determined by the ratio of the primary to secondary windings.

"Wall Wart" AC Adapters

Old fashioned wall warts are linear power supplies, which are not very efficient. Newer ones are switching supplies (more efficient) – see below.

RIPPLE

- As current is withdrawn from the filter capacitor, it discharges somewhat when its input voltage (from the rectifier bridge) is low.
- Since most loads are roughly constant current, you see a "ramp-like" ripple voltage at the output.
- The amplitude of the ripple varies significantly with the load current. WHY?
- Rule of thumb: > 1000 μ F/ampere (more even better, but can be bulky and costly).

THE ZENER DIODE REGULATOR

$$I_{zMAX} = \frac{P_{dMAX}}{V_z}$$

$$I_{total} = \frac{V_{supply} - (V_z + r_z I_z)}{R}$$

- Good for low currents.
- Choose a Zener diode that can handle the power dissipation required to deliver the current you need.
- Potential problems: noise, drift with temperature...

Linear Regulators

Basically a FEEDBACK CONTROLLED RESISTIVE DIVIDER that maintains a constant output voltage for a range of load currents...

They are relatively noise-free, but are somewhat inefficient...

Most require a voltage drop across them (typically at least 3 V) to operate.

Popular single-chip versions have only three terminals:

Op-Amp Voltage Regulator With Pass Transistor

Op-Amp Voltage Regulator With Current-Limit Circuitry

As the foldback transistor (Q2) "steals" base current from Q1, the current is limited... ultimately, if the output is shorted, the short-circuit current of the op-amp limits the output current.

Switching Regulators

- Here the basic principle is to use an energy storage element (typically an INDUCTOR, but it can be a CAPACITOR) to shuttle energy between a source (unregulated) and a load (regulated).
- The amount of energy in each "PACKET" that is shuttled is varied OR the rate of packet transfer is varied using FEEDBACK to maintain a constant output voltage.
- ADVANTAGES over linear regulators: LIGHTER (do not need heavy transformers), CHEAPER (transformers are expensive), SMALLER (transformers are BIG)
- DISADVANTAGES: NOISIER (due to high-frequency switching), MORE COMPLEX (and thus less reliable), HIGH VOLTAGES may be present!

Block Diagram of a "Switcher"

Simple Switcher: LT1070

Boost Converter (5V to 12V)

Source: Linear Technology LT1170 datasheet.

Typical Switcher Module

Inductors for Switchers

Switching Regulators

- "Three-terminal" switchers are available that wire up just like linear regulators.
- Some, like those from Dimension Engineering, are adjustable and are available as buck (step-down), boost (step-up), buck-boost (down or up) and inverting (generates negative rail from single positive rail).
- http://www.dimensionengineering.com/

Power Converter Modules

Example: Implantable Cardiac Defibrillator

Capacitive Power Converters

Source: Maxim MAX1044/ICL7660 datasheet.

MAX1044/ICL7660

These, and variants, are useful for small current applications (tens of mA).

Electromagnetic energy storage is more common, but capacitive approaches can be scaled up also... (See: https://

www.analog.com/en/design-notes/high-efficiencyhigh-density-switched-capacitor-converter-for-highpower-applications.html)

Source: Maxim MAX1044/ICL7660 datasheet.

*REQUIRED FOR V+ < 3.5V

Adjustable Bench Power Supply

- Can use adjustable regulators to build a bench-type power supply (commercial version shown).
- Typically, they
 provide a dual-rail
 adjustable output and
 a logic-level (+5V)
 output.

Batteries (Primary)

Secondary (rechargeable) batteries not covered here.

Interesting Signal Generation Circuits

Vacuum Tube Op-Amp Output

Chua's Chaotic Circuit

To see chaotic behavior, plot the voltage measured across C1 against the voltage measured across C2 (an X-Y oscilloscope with probes connected across these capacitors). The transition to chaotic dynamics can be found by *carefully* decreasing R or C1, (e.g. decrease R in steps of 0.01 to 1.2K). Source: http://www.cmp.caltech.edu/~mcc/chaos_new/Chua.html

Broadband Noise Generator

Digital Noise Generator Example

INTEGRATED CIRCUIT TYPE DESIGNATIONS AND POWER CONNECTIONS				
DESIGNATION	TYPE	<u>+V</u>	GROUND	GROUND UNUSED INPUTS
U1	CD4069UBE	14	7	9, 11, 13
U2	CD4077BE	14	7	12, 13
U3, U4	CD4015BE	16	8	-

NOTES:

- 1. +V = 5 TO 12 VOLTS
- 2. DECOUPLE ALL ICS WITH 0.1 uF CERAMIC CAPACITORS

Source: http://home.att.net/~theremin1/circuitlibrary/digitalnoisegen.html

Quick Look: Phase-Locked Loops

More Oscillator Circuits

Cool Ways to Make Sinewaves

- Wein Bridge variants.
 - Quartz crystal.
 - Stabilization schemes.
- Look-Up-Table + D/A Converter.
- Direct Digital Synthesis (accumulator + look-uptable + D/A converter).
- Filtered squarewaves.

Lamp-Stabilized Wein Bridge

Sines from Filtered Squarewaves

- Sweepable design switched capacitor filter automatically tracks squarewave frequency and filters all but the fundamental frequency.
- The result is clean sinewayes.

Sinewave V-to-F Converter

Source: Linear Technology AN-14.

Quartz Crystals and You

Quartz Oscillators

Squarewave Output

Sinewave Output

Source: Linear Technology AN-47.

Source: Horowitz & Hill, "The Art of Electronics," Cambridge University Press, 1989.

Other Handy Quartz Digital Oscillators

Source: Linear Technology AN-12.

Example Quartz Oscillator...

Quartz Oscillator Results

Modeling Quartz Crystals

Note: these values are comparable, but not identical to those given in the first set of lecture notes.

Typical Values (LTC AN-12):

$$R = 100 \Omega$$

$$L = 500 \, \mu H$$

$$C = 0.01 pF$$

$$Co = 5 pf$$

$$Q = 50,000$$

Crystal Filters

 Extremely narrowbandpass filters can be designed using quartz crystals.

 Note that 32.768 kHz watch crystals are handy for lowfrequency applications.

Source: Linear Technology AN-47.

Gilligan's Island Synthesizer

CMOS outputs (0 - 5 V) of decoder sum currents into an op-amp. By setting the pots to desired values, any 16-segment waveform can be synthesized.

Can use CdS cells (light-dependent resistors) for COOL effects!

Other Interesting Circuits

Ultrasonic Transducers

Electromagnetic Field Detector

Electromagnetic Transmitters

- As used in the Louvre (at least in 1972!) for guided tours.
- Can run a fine-gauge wire around the perimeter of a room (e.g., under carpet) and drive directly with a power amplifier.
- Multi-turn magnetic coil "receivers" (such as the coils used in EE122) can pick up the signal ("baseband AM") and, if amplified, it can be heard on a speaker or earphones.

